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Abstract

The proper orthogonal decomposition is a method that may be applied to linear and nonlinear structures for extracting

important information from a measured structural response. This method is often applied for model reduction of linear

and nonlinear systems and has been applied recently for time-varying system identification. Although methods have

previously been developed to identify time-varying models for simple linear and nonlinear structures using the proper

orthogonal decomposition of a measured structural response, the application of these methods has been limited to cases

where the excitation is either an initial condition or an applied load but not a combination of the two. This paper presents a

method for combining previously published proper orthogonal decomposition-based identification techniques for strictly

free or strictly forced systems to identify predictive models for a system when only mixed response data are available,

i.e. response data resulting from initial conditions and loads that are applied together. This method extends the

applicability of the previous proper orthogonal decomposition-based identification techniques to operational data

acquired outside of a controlled laboratory setting. The method is applied to response data generated by finite element

models of simple linear time-invariant, time-varying, and nonlinear beams and the strengths and weaknesses of the method

are discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method is commonly used to analyze the dynamics of complex structures [1]. Although
the method is very powerful and its extensive use in analyses is justified, some of its limitations become
apparent when it is applied for analysis of very large, possibly nonlinear structures with millions of degrees of
freedom. Months may be required to develop the geometry and form the element mesh for such models. After
the model is completed the analysis may require days or weeks of processing time [2]. Finally, there is no
guarantee that the analysis will accurately predict behavior of an actual structure. The analysis may be
incorrect due to modeling errors (e.g., incorrect assumptions about damping or linearity), parameter errors
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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(e.g., inaccuracy of Young’s modulus), or other factors [3]. For this reason, model updating and validation
procedures are often employed to ensure that the model accurately produces results that are consistent with
experimental measurements.

Many system identification methods have been developed that use experimental response data to improve or
create numerical modes for structures. For example, modal analysis is commonly used to compare resonant
frequencies and/or mode shapes of linear time-invariant finite element models with experimental results [4].
Model updating is also considered a type of system identification because it applies experimental data to improve
the numerical model [5]. Other system identification methods have been developed for linear and nonlinear
systems that attempt to develop a numerical model from the data when no finite element model is available.
However, current nonlinear identification techniques are only developed for systems where the functional form
of the nonlinearity can be determined from the data. Because a large variety of nonlinear forms exist, the process
of characterizing nonlinearities is difficult and cannot always be accomplished. The requirement that nonlinear
forms must be known, then, represents a significant drawback to nonlinear identification theory.

Linear time-varying systems may be well-suited to model the behavior of nonlinear systems and time-
varying system identification has been proposed as an alternative to nonlinear system identification [6], but
most linear time-varying identification methods require a prior understanding of the functional form of the
time variance. A general method for time-varying system identification was proposed for biological systems in
Ref. [7], but its application is limited to single-input single-output systems and a large number of data sets are
required. Perhaps due to these limitations, linear time-varying methods have not yet been applied for
nonlinear system identification.

Recent research has developed methods for time-varying identification of multiple-input multiple-output
structural systems based on the proper orthogonal decomposition [8,9]. Unfortunately, these methods can
only be applied to situations where the system is excited by either an initial condition or an applied load, but
not a combination of the two. In a non-laboratory setting it may be impractical to eliminate applied loads or
initial conditions (i.e. the structure may never be at rest). This paper presents a method for combining previous
proper orthogonal decomposition-based identification techniques so that they may be applied in situations
where strictly free or strictly forced responses are unobtainable, only a combination of the two.

The proper orthogonal decomposition is a statistical tool for extracting dominant information from
experimental data. The proper orthogonal decomposition has been applied in a variety of fields such as fluid
mechanics, economics, heat transfer, and, recently, structural dynamics [10]. The proper orthogonal
decomposition is attractive because it can be applied to any linear or nonlinear system to express a measured
response as a summation of modes [3]. These modes are generally different from the familiar eigenmodes of a
(linear time-invariant) system and can represent the measured response (even for a nonlinear system) to any
desired degree of accuracy by using enough dominant modes. The proper orthogonal decomposition is a linear
procedure but it does ‘‘not do the physical violence of linearization methods’’ and has been referred to as a
‘‘safe haven in the intimidating world of nonlinearity’’ [11]. The system identification methods proposed in
Refs. [8,9] and also in this paper use the proper orthogonal decomposition to cast a measured response into
the framework of a modal sum. Ideas from linear system theory and mode summation theory are then applied
to develop methods for using the data in the proper orthogonal decomposition to express the response of the
system to new excitations.

This paper is organized into six sections including this introduction. The following section provides an
overview of the proper orthogonal decomposition and its computation from the singular value decomposition
of a snapshot matrix. The next section reviews previously published methods of proper orthogonal
decomposition-based system identification for strictly free or strictly forced responses. This is followed by the
description of a method to combine free- and forced-response methods for mixed responses. Next, examples
are given using finite element models of linear time-invariant, time-varying, and nonlinear beams. Finally, we
present conclusions about the strengths and weaknesses of the proposed method.

2. The proper orthogonal decomposition

The proper orthogonal decomposition can be computed by several methods [10]. This section explains how
the proper orthogonal decomposition is computed with the singular value decomposition of a snapshot
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matrix. First, a system response is generated by exciting the system by applying a load or imposing an initial
condition, or both simultaneously. Next, the displacement at m degrees of freedom is sampled n times and the
data are arranged in a ‘‘snapshot’’ matrix W:

W ¼

w1ðt1Þ w1ðt2Þ � � � w1ðtnÞ

w2ðt1Þ w2ðt2Þ

..

. . .
.

wmðt1Þ wmðtnÞ

2
666664

3
777775. (1)

Next, the singular value decomposition of W is computed:

W ¼ URVT. (2)

In Eq. (2), the columns ui of U are the proper orthogonal modes, the columns vi of V are the proper
orthogonal coordinate histories that correspond to each proper orthogonal mode, and R is a diagonal matrix
whose diagonal elements si are the proper orthogonal values corresponding to each proper orthogonal mode.
The proper orthogonal coordinate histories describe the amplitude modulation of each proper orthogonal
mode and the proper orthogonal values describe the relative significance of each proper orthogonal mode in
the response W [10,12]. If the system is linear and lightly damped with a mass matrix proportional to the
identity matrix then the proper orthogonal modes will be equal to the linear normal modes [13,14]. For
nonlinear systems if a single nonlinear normal mode is excited then the first proper orthogonal mode is a linear
approximation to the excited nonlinear normal mode [13,15]. The percentage of signal energy captured by a
single proper orthogonal mode ui is given by

�i ¼
siPm
j¼1sj

. (3)

Typically, only proper orthogonal modes that constitute a certain percentage of signal energy (e.g. 99% or
99.9%) are considered [10,12]. If k dominant proper orthogonal modes are considered then we may
approximate W as a summation of proper orthogonal modes and corresponding proper orthogonal
coordinate histories, shown below (noting that R is diagonal):

W �
Xk

i¼1

siuiv
T
i . (4)

We note that even signals generated by nonlinear systems may be represented by a summation of proper
orthogonal modes. The proper orthogonal modes are ‘‘appealing for nonlinear system identification’’, in part
because they ‘‘obey a ‘sort of principle of superposition’ due to the fact that the original signal is retrieved
when all of the modal contributions are added up’’ [3]. In addition, the proper orthogonal modes are the
optimal basis for reconstructing the original displacement efficiently. In other words, W may be approximated
using fewer proper orthogonal modes than any other modes while maintaining the same level of accuracy.
Finally, it should be noted that the proper orthogonal modes and coordinate histories are orthonormal:

UTU ¼ VTV ¼ I. (5)

Although this section has focused on calculation of the proper orthogonal modes, values, and coordinate
histories by performing a singular value decomposition, these quantities may also be determined when
calculating the proper orthogonal decomposition by other methods [10]. The singular value decomposition is
used in this instance for its simplicity and convenient expression as a summation of modes.

3. Proper orthogonal decomposition-based system identification

This section introduces the proper orthogonal decomposition-based system identification techniques for
strictly free and strictly forced response from Refs. [8,9]. First, an analytical expression for the proper
orthogonal coordinate histories is developed using mode summation and linear system theory. Then, this
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expression is manipulated for identification and response prediction of systems excited by initial conditions
and loads, respectively.

3.1. Expression for proper orthogonal coordinate histories

The displacement w(x, t) of a vibratory system is governed by the (generally time-varying) equation

Mf €w; tg þDf _w; tg þ Lfw; tg ¼ f ðx; tÞ, (6)

where M, D, and L are mass, damping, and stiffness operators, respectively, and f(x, t) is a distributed
forcing function. At this point we do not make any assumptions about the form of M, D, and L other than
that they are linear. The solution to Eq. (6) may be computed by approximating the displacement variable
with a modal sum:

wðx; tÞ �
Xk

i¼1

uiðxÞviðtÞ. (7)

In this paper we assume that the proper orthogonal modes are used as the modes ui(x). If this is the case
then the modal coordinates vi(x) are equivalent to the proper orthogonal coordinates scaled by the proper
orthogonal values. In other words, the scaled proper orthogonal coordinate histories v̂i ¼ sivi are time-
sampled forms of the modal coordinates. We may then combine Eqs. (6) and (7) to obtain a matrix ordinary
differential equation for the proper orthogonal coordinates:

MðtÞ€vðtÞ þDðtÞ_vðtÞ þ KðtÞvðtÞ ¼ qðtÞ. (8)

In Eq. (8), the quantitiesM(t), D(t), and K(t) are the mass, damping, and stiffness matrices formed by taking
inner products of the proper orthogonal modes with the respective operators [16]. The quantity q(t) is a vector
of modal forces obtained by forming the inner product of the proper orthogonal modes with the applied load
f(x, t). In general, the matrices in Eq. (8) are full and an expression for the proper orthogonal coordinates is
found by converting Eq. (8) to state form:

_vðtÞ

€vðtÞ

( )
¼ AðtÞ

vðtÞ

_vðtÞ

( )
þ BðtÞqðtÞ. (9)

In Eq. (9), A(t) and B(t) are state matrices formed from M(t), D(t), and K(t):

AðtÞ ¼
0 I

�MðtÞ�1KðtÞ �MðtÞ�1DðtÞ

" #
, (10)

BðtÞ ¼
0

MðtÞ�1

" #
. (11)

The solution to Eq. (9) is given by [16]:

vðtÞ

_vðtÞ

( )
¼ UðtÞ

vð0Þ

_vð0Þ

( )
þ

Z t

0

Uðt� tÞBðt� tÞqðtÞdt, (12)

where U(t) is the state transition matrix, which for time-varying systems can be computed from the
Peano–Baker series [17]:

UðtÞ ¼ Iþ

Z t

0

Aðs1Þds1 þ
Z t

0

Aðs1Þ
Z s1

0

Aðs2Þds2 ds1 þ . . . . (13)

The scaled proper orthogonal coordinate histories are obtained from the upper-half partition of Eq. (12), i.e.

vðtÞ ¼ ½U11ðtÞ U12ðtÞ�
vð0Þ

_vð0Þ

( )
þ

Z t

0

U12ðt� tÞM�1ðt� tÞqðtÞdt, (14)
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where U(t) is partitioned into four equal submatrices:

UðtÞ ¼
U11ðtÞ U12ðtÞ

U21ðtÞ U22ðtÞ

" #
. (15)

If a system is linear, lightly damped, has a mass matrix proportional to the identity matrix, and is
responding to initial conditions only, then the proper orthogonal modes are equivalent to the eigenmodes of
the system [13,14] and the mass and stiffness matrices in Eq. (8) are diagonal. If proportional damping exists,
then the damping matrix is also diagonal and the state matrix A(t) is a block matrix composed of four equally
sized submatrices that are diagonal. If A(t) is composed of diagonal submatrices, then so are all of the integrals
of A(t) and matrix products of A(t) with its integrals in Eq. (13). Because every term in Eq. (13) is composed of
diagonal submatrices, then the submatrices of U(t) in Eq. (15) are all diagonal.

An example is now presented of a system that meets the requirements for the proper orthogonal modes to be
equal to the eigenmodes. Consider the nondimensional mass-spring system shown in Fig. 1.

The mass matrix for the system is

M ¼

1 0 0

0 1 0

0 0 1

2
64

3
75

and the stiffness matrix is

K ¼

2 �1 0

�1 2 �1

0 �1 1

2
64

3
75.

This system is undamped and the mass matrix is proportional to (in fact, it is equal to) the identity matrix.
The eigenmodes (scaled so that they are orthonormal) for the system are

½w1 w2 w3 � ¼

0:328 0:737 �0:591

0:591 0:328 0:737

0:737 �0:591 �0:328

2
64

3
75.

The system is given an initial displacement of w0 ¼ ½ 0 0 1 �T and the response is sampled every 0.1 s for
120 s. The proper orthogonal modes for the system may be computed from the measured response and are
equal to

½ u3 u1 u2 � ¼

0:3246 0:7398 �0:5893

0:5836 0:3337 0:7403

0:7443 �0:5843 �0:3235

2
64

3
75.

We note that the order of the proper orthogonal modes is not the same as that of the eigenmodes. This is
because the third eigenmode is most active in the measured response and is therefore approximated by the
proper orthogonal mode that corresponds to the highest proper orthogonal value, i.e. the first proper
orthogonal mode. The proper orthogonal modes and eigenmodes, although very similar, are not exactly equal.
However, the study in Ref. [13] demonstrated empirically that the difference in proper orthogonal modes and
Fig. 1. Example mass-spring system with equal masses.
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eigenmodes disappears as number of samples and the total measurement time increase. In this case,
we will show that the proper orthogonal modes and eigenmodes are similar enough that the assumption
of diagonal submatrices of U(t) holds. The proper orthogonal-modal mass and stiffness matrices are
calculated to be

M0 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75,

K0 ¼

1:5546 0:0004 0:0126

0:0004 3:2469 0:0178

0:0126 0:0178 0:1983

2
64

3
75.

We note that although the modal stiffness matrix is not diagonal, it is diagonally dominant. The modal
matrices may now be used to form the state matrix A:

A ¼
03�3 I3�3

�K0 03�3

" #
.

Finally, the state transition matrix U(t) may be formed at every time step from the series in Eq. (13).
Although it is impractical here to show all of the data at multiple time steps, we can illustrate the diagonal
dominance of the various submatrices of U(t) by examining the 2-norm of each matrix element over a time
range. The values of each element of U(t) were calculated at every 0.1 s for 10 s and a vector was formed
containing the time-series data for each matrix element, i.e.

pij ¼

Uijðt1Þ

Uijðt2Þ

..

.

Uijðt100Þ

2
666664

3
777775.

The 2-norm of each vector pij was then calculated. The 2-norms for each element of U(t) are shown below:

jjp11jj2 jjp12jj2 � � � jjp16jj2

jjp21jj2 jjp22jj2

..

. . .
.

jjp61jj2 jjp66jj2

2
666664

3
777775 ¼

50:60 0:00 0:01 32:40 0:00 0:02

0:00 49:36 0:00 0:00 15:90 0:01

0:01 0:00 53:33 0:02 0:01 240:57

78:34 0:00 0:01 50:60 0:00 0:01

0:00 167:66 0:01 0:00 49:36 0:00

0:01 0:01 9:44 0:01 0:00 53:33

2
666666664

3
777777775
.

Clearly, the diagonal terms in each of the four submatrices of U(t) contain much larger values than the off-
diagonal terms. The proposed method assumes that the proper orthogonal modes diagonalize the modal
matrices of the system, and is valid for unforced systems that are lightly damped with a mass matrix
proportional to the identity matrix. Even in cases where the proper orthogonal modes do not exactly
diagonalize the system’s modal matrices, the modal matrices may be diagonally dominant and the
approximation may still be accurate.

3.2. Free response identification

If the snapshot matrix W is formed from the response to an initial displacement profile w0, then the
snapshot matrix for the response to a new initial displacement profile ~w0 may be written as a weighted
summation of the old proper orthogonal modes and proper orthogonal coordinate histories, but the proper
orthogonal values are recalculated to express the new level of participation of each proper orthogonal mode in
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the new response:

~W �
Xk

i¼1

~siuiv
T
i . (16)

Ref. [8] shows how the new proper orthogonal values may be calculated from the new initial displace-
ment profile:

~si ¼
uTi ~w0

vi;0
; i ¼ 1; 2; . . . ; k. (17)

In Eq. (17), the terms vi,0 are the initial values of each proper orthogonal coordinate history, i.e. the first row
terms in each column of V.

Similarly, if the snapshot matrix W is formed from the response to an initial velocity profile _w0, then the
snapshot matrix for the response to a new initial velocity profile _~w0 may be written in the same form
as Eq. (16), but the proper orthogonal values are recalculated from the new initial velocity profile as

~si ¼
uTi
_~w0

_vi;0
; i ¼ 1; 2; . . . ; k. (18)

The initial time derivatives of the proper orthogonal coordinate histories may be found from the original
proper orthogonal values and the original initial velocity profile:

_vi;0 ¼
uTi _w0

si

; i ¼ 1; 2; . . . ; k. (19)

Now, we will use the expression for proper orthogonal coordinate histories developed to explain how the
free response method from Allison et al. [8] assumes that the system’s matrices U11(t) and U12(t) are diagonal.
If we assume that the original response was formed by imposing an initial displacement on the structure then
the expression for the scaled proper orthogonal coordinate histories is quite simple:

vðtÞ ¼ U11ðtÞvð0Þ. (20)

If we assume that U11(t) is diagonal (a valid assumption if the conditions outlined in the previous section are
met) then the expression is simplified even more and a single scaled proper orthogonal coordinate history can
be written as

vjðtÞ ¼ U11;jðtÞvjð0Þ (21)

or in time-sampled form at all time steps as

v̂j ¼ sjvj ¼ f11;j v̂j;0, (22)

where f11,j is a vector containing the values of the jth diagonal element of U11(t) at every time step and the hat
notation indicates that the proper orthogonal coordinate history vj is scaled by its corresponding proper
orthogonal value. The proper orthogonal coordinate history may be modified to represent the response to a
new initial condition:

~̂vj ¼ f
11;j
~̂vj;0 ¼

sjvj
~̂vj;0

v̂j;0
. (23)

The initial values for the scaled proper orthogonal coordinate histories are related to the initial displacement
profiles through a proper orthogonal mode:

½ v̂j;0
~̂vj;0 � ¼ uTj ½w0 ~w0 �. (24)

Finally, we may insert Eq. (24) into Eq. (23) to rewrite the modified proper orthogonal coordinate history as

~̂vj ¼ sjvj

uTj ~w0

uTj w0

¼ sjvj

~sj

sj

¼ ~sjvj, (25)
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where ~sj is the new proper orthogonal value obtained from Eq. (17). Eqs. (21)–(25) show that the free response
method presented in Ref. [8] assumes that the modal matrices in Eq. (8) are diagonal, although this
assumption was not obvious from the formulation of the method in Ref. [8]. It is trivial to show that the same
assumption is made for initial velocity profiles.

3.3. Forced response identification

Now we will discuss systems that are strictly forced, i.e. systems that start at rest and are excited by an
applied force f(x, t). Reference [9] shows that the response to a new force ~f ðx; tÞ may be computed by
modifying the proper orthogonal coordinate histories to remove the effects of the original force and
incorporate the effects of the new force. If the system’s mass, damping, and stiffness matrices are diagonalized
by the proper orthogonal modes, then the scaled proper orthogonal coordinate histories are equal to the time-
sampled results of a convolution operation:

viðtÞ ¼

Z t

0

Ciiðt� tÞqiðtÞdt ¼ CiiðtÞnqiðtÞ; i ¼ 1; 2; . . . ; k. (26)

In Eq. (9) the terms Ti(t) are continuous forms of the proper orthogonal coordinate histories vi,
the terms Cii(t) are the diagonals of the time-varying matrix product U12ðtÞM

�1ðtÞ, and the terms qi(t)
are modal forces formed from the inner product of each proper orthogonal mode and the applied load.
The terms Cii(t) can be considered as (proper orthogonal) modal impulse response functions. In discrete form,
Eq. (26) becomes

v̂iðtjÞ ¼ Dt
Xj

p¼1

CiiðtpÞqiðtj�pþ1Þ; i ¼ 1; 2; . . . ; k. (27)

We may perform the operation in Eq. (27) for every time step and write it in matrix form as

v̂i ¼ Dt �Qicii; i ¼ 1; 2; . . . ; k, (28)

where �Qi is a lower triangular Toeplitz matrix:

�Qi ¼

q1ðt1Þ 0 0 � � � 0

q1ðt2Þ q1ðt1Þ 0 � � � 0

q1ðt3Þ q1ðt2Þ q1ðt1Þ � � � 0

..

. ..
. . .

. ..
.

q1ðtnÞ q1ðtn�1Þ � � � q1ðt2Þ q1ðt1Þ

2
66666664

3
77777775

n�n

. (29)

The discrete form of each modal impulse response function may be computed as

cii ¼
1

Dt
�Q
�1

i v̂i; i ¼ 1; 2; . . . ; k. (30)

In cases where �Qi is rank deficient, an acceptable least squares solution may be obtained by using the
Moore–Penrose pseudoinverse in place of the inverse in Eq. (30) [18].

Once the desired number of discrete modal impulse responses have been found then we may use them to
predict the response to a new forcing function ~f ðx; tÞ. First, we discretize ~f ðx; tÞ by writing it as a force
snapshot matrix ~F:

~F ¼

f 1ðt1Þ f 1ðt2Þ � � � f 1ðtnÞ

f 2ðt1Þ f 2ðt2Þ

..

. . .
.

f mðt1Þ f mðtnÞ

2
666664

3
777775, (31)
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where f iðtjÞ denotes the load applied at the ith degree of freedom at time tj. The new modal forces are
then calculated

~qi ¼ uTi
~F; i ¼ 1; 2; . . . ; k (32)

and the new scaled proper orthogonal coordinate histories are written as

~̂vi ¼ Dt
�~Qicii; i ¼ 1; 2; . . . ; k, (33)

where �~Qi is a revised Toeplitz matrix formed from ~qi as in Eq. (29). Finally, the new response is
approximated as

~W �
Xk

i¼1

ui ~̂v
T

i . (34)

There are several sources of error in the prediction methods explained for both strictly free and strictly
forced systems. First, each method can only accurately predict a response matrix that may be spanned by the
original set of proper orthogonal modes. If initial conditions or loads are introduced that generate a response
that cannot be expressed by the proper orthogonal modes ui then the prediction will be inaccurate.
Therefore, when constructing the model it is desirable to use a response containing a wide variety of shapes in
order to generate proper orthogonal modes that can represent responses to a large selection of initial
conditions or loads.

Both the free- and forced-response methods assume that the modal matrices of the system are diagonalized
by the proper orthogonal modes. This condition is only fully met if the structure (1) is lightly damped with a
mass matrix proportional to the identity matrix and (2) is responding to an initial condition. Although many
structures are lightly damped, the mass matrix condition is generally not satisfied by real structural models,
and the methods are applied to forced systems as well as unforced systems. However, in many cases the proper
orthogonal modes may give modal matrices that are diagonally dominant and the method may still provide an
accurate response approximation.

When the method is applied to nonlinear systems, a linear time-varying model is obtained that will be able
to reconstruct the original nonlinear responses accurately. For nonlinear systems, a new excitation can result
in a significant change in the natural frequencies of the system and cause the system exhibit new behaviors
[3,19]. The reduced-order model constructed from the proper orthogonal decomposition will be unable to
predict nonlinear effects that are not present in the original signals. However, the model may accurately
predict a response that is ‘nearby’ the original ones.
4. Adaptation for mixed responses

The previous section reviewed methods for using strictly free or forced responses of a system to predict new
free or forced responses, but the methods could not be combined, i.e. a measured free response could not be
used to predict a forced response or vice versa. This section describes a method for using measured mixed
responses of a system to form a predictive model for both free and forced responses. First, we measure three
distinct sets of response data that all result from combinations of both applied loads and initial conditions.
The data are arranged in snapshot matrices aW, bW and cW. We now calculate the proper orthogonal
decomposition of the first snapshot matrix:

aW � ðaUÞðaSÞðaVTÞ ¼ ðaUÞðaV̂
T
Þ. (35)

In Eq. (35) we have combined the proper orthogonal values with the proper orthogonal
coordinate histories. Eq. (35) is an approximation because we have kept only the k dominant proper
orthogonal modes. We may approximate the snapshot matrix bW using the first set of proper orthogonal
modes as

bW � ðaUÞðaUTÞðbWÞ, (36)
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Fig. 2. Linear time-invariant (top), linear time-varying (middle), and nonlinear (bottom) beam models.
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Fig. 3. Cubic spring force for nonlinear beam model.
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Fig. 4. Time variation of tip mass for linear time-varying beam model.
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where the approximation is now transformed into the subspace spanned by the proper orthogonal modes aU.
We may rewrite Eq. (36) as

bW � ðaUÞðbV̂
T
Þ, (37)
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where bV̂
T
contains the time modulations of the proper orthogonal modes aU in the response bW. Similarly,

c
W can be approximated by

cW � ðcUÞðcV̂
T
Þ, (38)

where

cV̂
T
¼ ðaUTÞðcWÞ. (39)

Using the proper orthogonal decomposition-based identification methods outlined in the previous section,
we now write each proper orthogonal coordinate history as a superposition of free and forced responses:

av̂i ¼
asi;dispvi;disp þ

asi;velvi;vel þ
a �~Qicii, (40)

bv̂i ¼
bsi;dispvi;disp þ

bsi;velvi;vel þ
b �~Qicii, (41)
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cv̂i ¼
csi;dispvi;disp þ

csi;velvi;vel þ
c �~Qicii. (42)

The modal forces used to form the matrices a �~Qi,
b �~Qi and

c �~Qi are all computed using the proper orthogonal
modes aU. The terms vi;disp and vi;vel are proper orthogonal coordinate histories for calculating the response to
initial displacements and velocities, respectively. The term cii is a discretized modal impulse response function.
We wish to solve for vi;disp, vi;vel, and cii as they will allow us to predict system responses to initial
displacements, initial velocities, and loads, respectively. However, Eqs. (40)–(42) represent only three
equations and there are nine unknowns.

Additional equations may be found by considering the initial displacement and velocity profiles used to
generate aW, bW and cW. We can compute the ratio of two displacement-related proper orthogonal values as

asi;disp

bsi;disp
¼
ðauTi Þð

aw0Þ=vi;0;disp

ðauTi Þð
bw0Þ=vi;0;disp

¼
ðauTi Þð

aw0Þ

ðauTi Þð
bw0Þ

. (43)
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Similarly, the remaining displacement proper orthogonal value ratio and the velocity proper orthogonal value
ratios can be computed as

asi;disp

csi;disp
¼
ðauTi Þð

aw0Þ

ðauTi Þð
cw0Þ

, (44)

asi;vel

bsi;vel
¼
ðauTi Þð

a _w0Þ

ðauTi Þð
b _w0Þ

, (45)

asi;vel

csi;vel
¼
ðauTi Þð

a _w0Þ

ðauTi Þð
c _w0Þ

. (46)

The final two equations are obtained by recalling the orthonormality of proper orthogonal coordi-
nate histories:

vTi;dispvi;disp ¼ 1, (47)
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Fig. 10. Tip displacements for linear time-invariant beam in response to ~w0: —— finite element model and - - - - - mixed response method.
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vTi;velvi;vel ¼ 1. (48)

Eqs. (40)–(48) represent a system of linear equations that may be solved to obtain vi;disp, vi;vel, and cii for
i ¼ 1; 2; . . . ; k. Once these quantities are obtained they may be used as explained in the previous section to
predict the response of the system to initial displacements, initial velocities, or applied loads. Because the
methods in the previous section are linear, the response to a combination of these excitation types may be
found by superposing the separate responses.

If mixed response data are used to predict the response to initial velocities then the method given in the
previous section must be modified slightly. In the previous section the initial time derivative of each proper
orthogonal coordinate history was calculated from Eq. (19). If mixed response data are used to identify vi;vel

then the initial time derivative _vi;0;vel can not be calculated in the same way because there are no proper
orthogonal values directly corresponding to vi;vel. In this case, however, we can approximate _vi;0;vel as

_vi;0;vel �
vi;velðt2Þ � vi;velðt1Þ

Dt
. (49)
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Fig. 12. Tip displacements for linear time-invariant beam in response to ~FðtÞ: —— finite element model and - - - - - mixed response method.
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The same types of error present in the strictly free and strictly forced response prediction methods are also
present in the mixed response method given here.

5. Examples

This section applies the proposed method to three beam models, shown in Fig. 2. The first model is a linear
time-invariant undamped cantilever beam. Next, a time-varying tip mass is attached to the tip of the beam to
convert it to a linear time-varying system. The linear time-invariant beam is also converted to a nonlinear
system by attaching a cubic spring to the tip. A dashpot is also attached to the nonlinear beam to simulate
damping. All of the beam models were made of steel (E ¼ 2� 1011 Pa, r ¼ 8000 kgm�3) and had dimensions
of 61� 2.54� 1.9 cm3. Finite element models were created for each beam using 24 beam elements. The spring
force (over the tip displacement range seen in simulations) for the nonlinear beam is shown in Fig. 3

(F ðwtipÞ ¼ 17:5wtip þ 163w3
tip) and the time variance in the tip mass for the linear time-varying beam is shown

in Fig. 4 (mðtÞ ¼ 0:023e�300t). The value of the dashpot on the nonlinear beam was 35N s in�1.
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Fig. 14. Tip displacements for linear time-varying beam in response to _~w0: —— finite element model and - - - - - mixed response method.
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The Newmark method was applied to simulate the exact response of each beam model to three excitation
sets consisting of initial displacements and velocities and an applied force. The initial displacement and
velocity profiles for the beams are shown in Figs. 5 and 6, respectively, and a 2224N vertical pulse was applied
for 0.5ms at locations 21, 12, and 3 in from the beam root for respective excitation sets a, b, and c. The
responses of each beam model to each excitation set were simulated for 50ms and the vertical displacements at
25 points along each beam were captured every 0.1ms to form W. Thus the dimensions of aW, bW and cW

were (25� 500) for all beam models.
Next, the proper orthogonal decomposition was computed for each beam’s response to excitation set a and

the mixed response method described in the previous sections was applied to identify vi;disp, vi;vel, and cii for
each beam using excitation sets b and c as supplementary excitations. These quantities were used to simulate
the response of both systems to a new initial displacement ~w0, a new initial velocity _~w0, and a new applied load
~FðtÞ, shown in Figs. 7, 8, and 9, respectively. Although responses to initial displacements, velocities, and
excitations are calculated separately here, responses to mixed conditions can be obtained easily by superposing
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Fig. 16. Maximum error variation with tip mass decay rate.
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the responses to each conditions. The responses were simulated using the first four proper orthogonal modes,
which corresponded to 99% of the original signal energy.

The tip displacements at each time step calculated by the finite element model and the mixed response
method for response of the linear time-invariant beam to each excitation are shown in Figs. 10–12. All three
figures show that the proper orthogonal decomposition-based model predicts the tip displacements accurately
for the beam, but that errors are present, particularly in the responses to _~w0 and ~FðtÞ. The errors may be
attributed to (1) the inability of the proper orthogonal modes computed from aW to perfectly predict the new
response and (2) the fact that the modal matrices of the beam are not diagonalized by the proper orthogonal
modes. Despite the errors, however, the mixed response method produces satisfactory predictions even when
the proper orthogonal modes do not perfectly diagonalize the system matrices.

The tip displacements at each time step calculated by the finite element model and the mixed response
method for the linear time-varying beam are shown in Figs. 13–15 for the responses to the initial displacement,
initial velocity, and load, respectively. The effect of the time-varying tip mass is visible in the responses as
changes in amplitude and frequency content over time. These figures show that significant errors are present in
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Fig. 18. Tip displacements for nonlinear beam in response to _~w0: —— finite element model and - - - - - mixed response method.
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Fig. 17. Tip displacements for nonlinear beam in response to ~w0: —— finite element model and - - - - - mixed response method.
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Fig. 19. Tip displacements for nonlinear beam in response to ~FðtÞ: —— finite element model and - - - - - mixed response method.
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the method’s response predictions for the linear time-varying beam model for all of the excitations,
particularly the response to the initial velocity and applied load. These errors are attributed to the fact that the
(initially) large tip mass strongly violates the requirement that the mass matrix must be proportional to the
identity matrix and the modal matrices for the system are not accurately approximated as diagonal matrices.

The negative effects of the tip mass may be increased or reduced by changing the exponential decay rate of
the tip mass. If the mass decreases more slowly than shown in Fig. 4 then its negative effect on the mass matrix
lasts longer and reduces the accuracy of the prediction. On the other hand, however, as the decay rate is
increased then the diagonal terms on the mass matrix are similar to each other for a longer length of time,
increasing the accuracy of the solution. This trend is illustrated in Fig. 16, which shows the maximum error of
the mixed response method’s prediction at various decay rates is shown in Fig. 16.

The displacement norms for the nonlinear beam are shown in Figs. 17–19 for the three new excitations. In
each figure the results obtained using the mixed response method are plotted with the exact results obtained by
the finite element model. The figures show that the method is capable of generating a reasonably accurate
response prediction without requiring any information about the functional form of the nonlinearity, although
several sources of error are present. As with the other beams, error is introduced from both (1) using
proper orthogonal modes from a response that is different than the predicted one and (2) assuming that the
matrices U11(t), U12(t), and C(t) are diagonal. The response predictions for the nonlinear beam contain
additional errors that result from using a linear time-varying method for identifying a nonlinear system.
The linear model, although able to reproduce the original nonlinear data sets, exhibits frequency and
magnitude discrepancies when predicting the new responses. Frequency discrepancies are most visible in the
response to ~FðtÞ.

6. Conclusions

The results displayed in the previous section demonstrate that the proposed method is capable of producing
accurate response predictions for models whose modal matrices are approximately diagonalized by the proper
orthogonal modes. Although the example analyses shown were performed with finite element models, the
results suggest that the proposed method may be applied to construct an accurate predictive model for a
structure from data obtained by time sampling the transient response of the structure in an experiment.

This paper outlined a method for using the proper orthogonal decomposition with linear system theory to
construct a linear time-varying model for a structure by measuring its response to any combination of applied
loads or initial conditions. The model is formed by combining previous methods for creating proper
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orthogonal decomposition-based models from strictly free or forced responses of the system. No knowledge of
the governing equations of motion for the structure (e.g., from a finite element model) is required to construct
the model. Thus, the proposed method may provide a useful technique for modeling nonlinear systems using
only test data when the form of the nonlinearity is unknown. For linear systems the accuracy of the method
depends on (1) how well the proper orthogonal modes from the original response span the space of the
predicted response and (2) how well the proper orthogonal modes diagonalize the modal matrices for the
system. For nonlinear systems the same conditions are important but additional error may be present if
the frequency content or nonlinear characteristics of the predicted response are significantly different from
those available in the measured data.

Acknowledgments

The first author acknowledges support from a National Physical Science Consortium fellowship, a Virginia
Space Grant Consortium fellowship, and stipend support from Sandia National Laboratories. The third
author acknowledges support from the George R. Goodson Professorship.
References

[1] K.H. Huebner, T.G. Byrom, D.L. Dewhirst, D.E. Smith, The Finite Element Method for Engineers, Wiley, New York, 2001.

[2] J.K. Bennighof, M.B. Muller, M.F. Kaplan, Computational costs for large structure frequency response methods, Proceedings of the

38th AIAA Structures, Structural Dynamics, and Materials Conference, Kissimmee, April 1997, Paper 1977-1274.

[3] G. Kerschen, K. Worden, A.F. Vakakis, J.C. Golinval, Past, present and future of nonlinear system identification in structural

dynamics, Mechanical Systems and Signal Processing 20 (2006) 505–592.

[4] D.J. Ewins, Modal Testing: Theory and Practice, Research Studies Press Ltd., Hertfordshire, 1984.

[5] M. Friswell, J.E. Mottershead, Finite Element Model Updating in Structural Dynamics (Solid Mechanics and its Applications),

Kluwer, Dordrecht, 1995.

[6] M. Verhaegen, X. Yu, A class of subspace model identification algorithms to identify periodically and arbitrarily linear time-varying

systems, Automatica 31 (1995) 201–216.

[7] J.B. MacNeil, R.E. Kearney, I.W. Hunter, Identification of time-varying biological systems from ensemble data [joint dynamics

application], IEEE Transactions on Biomedical Engineering 39 (1992) 1213–1225.

[8] T.C. Allison, A.K. Miller, D.J. Inman, Free response simulation via the proper orthogonal decomposition, AIAA Journal 45 (2007)

2538–2543.

[9] T.C. Allison, A.K. Miller, D.J. Inman, A deconvolution-based approach to structural dynamics system identification and response

prediction, ASME Journal of Vibration and Acoustics 130 (2008) 031010.

[10] G. Kerschen, J.C. Golinval, A.F. Vakakis, L.A. Bergman, The method of proper orthogonal decomposition for dynamical

characterization and order reduction of mechanical systems: an overview, Nonlinear Dynamics 41 (2005) 147–169.

[11] G. Berkooz, P. Homes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid

Mechanics 25 (1993) 539–575.

[12] R. Kappagantu, B.F. Feeny, An optimal modal reduction of a system with frictional excitation, Journal of Sound and Vibration 224

(1999) 863–877.

[13] B.F. Feeny, R. Kappagantu, On the physical interpretation of proper orthogonal modes in vibrations, Journal of Sound and Vibration

211 (1998) 607–616.

[14] G. Kerschen, J.C. Golinval, Physical interpretation of the proper orthogonal modes using the singular value decomposition, Journal

of Sound and Vibration 249 (2002) 849–865.

[15] B.F. Feeny, On the proper orthogonal modes and normal modes of continuous vibration systems, Journal of Vibration and Acoustics

124 (2002) 157–160.

[16] L. Meirovitch, Principles and Techniques of Vibrations, Prentice-Hall, New Jersey, 1997.

[17] J.J. Dacunha, Transition matrix and generalized matrix exponential via the Peano–Baker series, Journal of Difference Equations and

Applications 11 (2005) 1245–1264.

[18] J. Rahman, T.K. Sarkar, Deconvolution and total least squares in finding the impulse response of an electromagnetic system from

measured data, IEEE Transactions on Antennas and Propagation 43 (1995) 416–421.

[19] L.N. Virgin, Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration, Cambridge University Press,

New York, 2000.


	A time-varying identification method for mixed response measurements
	Introduction
	The proper orthogonal decomposition
	Proper orthogonal decomposition-based system identification
	Expression for proper orthogonal coordinate histories
	Free response identification
	Forced response identification

	Adaptation for mixed responses
	Examples
	Conclusions
	Acknowledgments
	References


